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Abstract. \ln energy decay rate is obtained for solutions of wave

Sy o

type equations in a bounded region in R" whose boundary consists partly of
. a nontrapping reflecting surface and partly of an energy absorbing surface.
Unlike most previous results on this problem, the results presented here
are valid for regions having connected boundaries.
: Key-words. Wave equations, boundary stabilization, exponential
stability. -
. Let 2 be a bounded, open ,connected set in R" (n22) and T denote its
boundary. Assume that ' is piecewise smooth and consists of two parts, T

o
and Tl. with F1#¢ and relatively open in I', and Fo either empty or having a

1
function satisfying k(x)20 almost everywhere on rl. Consider the problem

non-empty interior. We set Eo=rox(0.w). 2 =r1x(0,w). Let k be an L”(rl)

£ Sl o i 4

(1) w'—Aw =0 in x(0,»),
(2) Gw/dv = —kw’'  on 21 w = 0 on 20.
(3) w(0) = . w'(0) =w' inD

a8 s W N &

where '=d/dt and v is the unit normal of I' pointing towards the exterior of

n.

-
-

Associated with each solution of (1.1) is its total energy at time t:

E(t) = 3 Jp w2+ Jow|?)ax.

A simple calculation shows that
E'(t) = =fp kw'?dr <o,
1
hence E{(t) is nonincreasing. The question of interest for us is the

: following: Under what conditions is it true that there is an exponential

decay rate for E(t), i.e..
(4) E(t) < Ce “'E(0), L 20
, for some positive w.

The first person to establish (4) for solutions of (1)-(3) was G.
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Chen [1]. under the following assumptions: k(x)2k0>0 on rl. and there is

a point x €R" such that

0
(5) (x—xo)-v < 0, x€r0.
(6) (x—xo)'v 27 >0, xer,.

Chen slightly relaxed (5) and (6) in a later paper [2]. The most general
result to date in terms of the assumed geometrical conditions on I' appears

in [5]. There it is proved that (4) is valid provided there exists a vector

field h(x):[hl(x).'".hn(x)]ecz(a) such that

(7) hev <O on ro
(8) hev 2v>0 on Tl.
(9) the matrix (ahilaxj+ ahj/axi) is positive definite on 0.

This last result has subsequently been reproved by Lasiecka-Triggiani [7]

and Triggiani [9] using methods different from those in [5]. In all of the

©
papers cited, the estimate (4) was obtained from estimates on J E(t)dt by
0]

employing a result of Datko [3] (later extended by Pazy [8]). Thus in all
cases the constants C and w are not given explicitly in terms of problem

data.

An important observation is that when I' is smooth, the conditions (5)

and (6) (resp.. (7) and (8)) together force F60F1=¢. Thus if Fo¢¢. the
above results cannot apply to regions {2 having a connected boundary.
However, in a recent paper [4]. Kormornik and Zuazua succeeded in relaxing
condition (6) of Chen to

(10) {x=x.)*v 20 onT

0) 1
thus allowing for regions with smooth connected boundaries, but at the
expense of replacing the boundary condition (2a) by

(11) dw/dv = -((x—xo)°u)w' on 21.
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In addition, the proof in [4] gives explicit estimates of the constants C

and @ in (4) in terms of the geometry of {2, more specifically, in terms of
the constants Ho and My which appear in (16), (17) below.

The purpose of this paper is to extend the result of [4] in two ways:
first, by replacing the specific vector field XX in (5) and (10) by a
general vector field h(x) satisfying (7)., (9). and
(12) hev 2 0 on Tl.
and, second, by replacing the boundary condition (11) by
(13) 8w/dv = -k’ (hev)w' on 3
where K" €L”(T|) satisfies k“zk0>o on I. Note that if h-u2v>0 on I, the
boundary condition (2a) may be written as (13) with k“:k/(h'v). Hence, in
this situation., we recover (a sharpened form of) the main result of [5]
(see Theorem below). Also, as in [4]. we will obtain explicit estimates on
the constants C and w in (4) in terms on constants associated with the
geometry of 2, the gain ' and the vector field h.

The formal statements of the two results to be proved are as follows.

THEOREM. Let w be a regular solution to (1). (2b) and (13). Then there is a

constant w (which may be explicitly estimated) such that

J E(s)ds < (1/w)E(0),
0

o0 [ ]

J E(s)ds ¢ ) E(s)ds, to.
t 0]

COROLLARY. Under the hypotheses of the Theorem,

E(t) < ere “'E(0). t©1/0.
Remark 1. If the initial data (3) satisfies wOeH!(Q), w'eL2(Q). w=0 on .
it is well known that (1)-{3) has a unique weak solution such that

(w.w’)€C([0.°):HI(Q)XL2(Q)). w=0 on 20 in the sense of traces, and

kllzw'€L2(0.T:L2(F1)). for every T>0. The proof of Theorem requires




additional regularity of w, namely (w.v')€C([0,~);H2(Q)le(n)), ¥When
;1{63#¢. this latter requirement may not be satisfied even for smooth data

and boundary since singularities may develop at points on anFl' On the

other hand, when Fbﬂf;=¢ the solution will always possess the necessary

0

regularity if wo€H2(Q). WIGHI(Q). w°=0 on ., Ow /6v+kw1=0 on Fl.

ol
Remark 2. The Theorem and Corollary may be extended to generalized wave

equations with time independent coefficients as in [5] but under the weaker
condition (12) and also to linear elastodynamic systems (cf. p. 167 of [5]

and also [6]). We omit details.

Proof of Corollary. Since E(t) is nonincreasing, for every 7>0

TE(t+7) < J E(s)ds ¢ (1/w)e “'E(0).
t

or
(14) E(t+1) ¢ (e“T/or)e (™ TE(0),  mo.
The first factor on the right has its minimum at 7=1/w and for this value
of T (14) becomes
E(t+1/0) ¢ ere {100y 0.

Proof of Theorem. We assume that ro¢¢. The argument may easily be modified

to handle the opposite case as in [5] or [9].

Define the matrix H:(ahi/axJ + ahj/axi). By assumption we have
(15) HE-E holflz. FeR", xen, ho>0.
Since multiplication of h by a positive constant leaves ro and Tl

invariant, we may (and do) assume that h.=1 in (15).

(0]
Define constants Mo and My by
2 2
(16) fp v < ugfy lovi®ax.
2 2
(17) Jo voax Cu Sy lov)®ax

for all veH' (1) such that v=0 on I For >0 and fixed, define
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Fz-.(t) = E(t) + ep(t)
where
p() = 2(w .heww) + ((hy —Iw.w').
We note that
le(e) | < CGE(e).

hence
(18) (1-€C,)E(t) € F(t) § (1+eCo)E(t)
where C, depends on h and ) We will show that for e sufficiently small,
(19) F:(t) § —E(t) + Cefyy wPdx
where C depends on h. iy and i .

One has
(20) p'(t) = 20w’ ".hevw) + 20w’ heww') + ((hy L) +

((hJ'J—l)w.w").
From (1), (2) we have

(21) (w''.v) + (vw.9v) + b(w'.v) ~ fro(awlav)vdf =0
for every veH!(R). where
b(w'.v) = frlk“(h-v)w’vdr.
We use (21) to calculate (w''.h-vw) and ((h; ;~1)w.w’’) in (20). One has
(22)  (w''.heww) = |vw.9(h-vw)) — b(w'.hww) + fro(aw/au)h-vwdr.

A direct calculation gives

. _ _ 2
(23) (ww.v(h-ww)) = J hi'jwiwjdx (172)J, hj'lew| dx +
(1/2)5, hew|vw|%ar.
Similarly,
— o -— —— — 2 -— —
(24) ((hJ'J Nww ') = =5 (hJ.J 1) |ow|“dx Ia hj'ijwwidx
b(w'.(hj‘J—l)w).
Ve also have
5
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(25) (w'.heww') = (1/2)Irl(h°v)w (1/2),]'n hJ 5" dx.
Use of (22) - (25) in (20) gives
(26) p'(t) = 2f h1 j'i'jdx + IQ |vw|2dx —-IQ w'2dx -
T by g ymedx = Jp (hev) low | 2dr +2fr0(6w/6v)h-vwdl‘ +

Irl(h-v)w'2d1" = 2b(w" heww) = b(w'. (hy —1)w).

The integrals over TO. viz.

(27)  2f, (8w/3v)hewwdl — f.. hev|ow|2dr = [ h-v(3w/av)2dr < o.
Ty o To

We also have the estimates

(28) [b(w' .hevw)| = |frlk"(h-u)w' (hevw)dr|

< S hevlow]?dr + ¢, 5. (hev)w2ar,
1 1

(29) Ib(w'.(hy ~1)w)] < Ca/(26)f, (hew)w2ar + (8/2)J fow|%ax
’ 1
2 2
(30) UQ hj'ijwwidx| S Ca/(26)S widx + (6/2)u1f|vw| dx
where C,, C, depend on h and k“. C; on h and where 5>0 will be chosen
below. Use of (27) - (30) and (15) ( recall that ho=1) in (26) yields
. . 2
pr(t) ¢ =Fy (w2 owl®)ax + (8/2)(ugru S, IowlZax +

(C1+C2/(26) + 1)f, (hev)w'Zdr + Ca/(26) ], woex.
1

Choosing & =1/(u0+p1) we obtain

(31) p'(t) € —E(t) + qur (hev)w'2dx + Clq w2dx

where C4=C,+C2/(26)+1. 5= /(26) Since k" 2k >0 on r we obtain from (31)
Fo(6) = E'(0) + ep’(1)

—Jrlk”(h'v)W'zdF +ep'(t)

S =E(1) + C Sy, wodx + frl(eC4—ko)(h-v)w'2dF

¢ —eE(t) + eCSIQ w2dx

provided eC4$ko. This establishes (19).
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Let B>0 and consider

(32) 5 Pk (s)ds = F (1) + B e PE (s)as
t t

S —f e-ﬁ(s_t)E(S)ds + eCf e_ﬁ(s-{)l'('-s)|2ds-
t t

From (18), Fe(s)ZO provided eCogl. From Theorem 2 of [5]. we have the

estimate
(33) 5 e B (e 5)12as ¢ C:E(t) + nf e Pt 3)E(5)ds
t t

where 1>0 is arbitrary and C: is a constant independent of . Therefore

(32). (33) imply

(39)  ef ePUUg(s)as < F(¢) + eC5[CE(t) + nf e P57 ()as]
t t

where e=min(1/Co kO/C }. Choosing n:l/qu (q>1) in (34) gives the estimate

(35) (a=lle I e P(5E(5yds < F (1) + €C

A . <C 1/ E(t) < (1+eK )E(t)

where K —C + CSCI/ does not depend on B. Define wq:(q—l)e/q(l+eKq) and

let ﬁﬂO in (35) to obtain

(36) J E(s)ds < (170 )E(t). 0. @1
t

The conclusions of the Theorem with;a=w2=e/2(l+eK2) (for example) follow

easily from (36).
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